УрФУ Контрольная работа. Математические основы экономических решений


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное образовательное учреждение
высшего профессионального образования
«Уральский федеральный университет имени первого Президента России Б.Н.Ельцина»
Методы оптимальных решений
Модуль  математические основы экономических решений
Программа и контрольные задания для студентов заочной формы обучения ВШЭМ УРФУ
Екатеринбург, 2015
Введение
В настоящих методических указаниях приведена программа и контрольные задания для студентов заочной формы обучения ВШЭМ УРФУ.
Номер варианта в задании контрольной работы определяется по последним двум цифрам номера студенческого билета или зачётной книжки.

  1. Контрольную работу следует выполнять в отдельной тетради.
  2. На обложке тетради необходимо указать: а) свою фамилию и инициалы; б) группу и специальность обучения; в) номер зачётной книжки; г) название дисциплины.
  3. В контрольную работу должны быть включены все задачи, указанные в задании, и в строгом соответствии с номером своего варианта.
  4. Решения задач в каждой контрольной работе следует располагать обязательно в порядке номеров, указанных в задании. Перед решением каждой задачи необходимо выписать полностью её условие.
  5. Решения задач должны содержать подробные пояснения и необходимые чертежи.

Контрольная работа проверяется в период сессии, до экзамена или зачёта.
Зачтённая контрольная работа является допуском студента к зачёту или экзамену по дисциплине.
Во время сдачи зачёта или экзамена студент должен показать понимание основных теоретических и практических вопросов программы и умение применять их в решении задач и примеров. Определения, теоремы и правила должны формулироваться точно и с пониманием существа вопросов.
Во время экзаменационных сессий для студентов-заочников организуются обзорные лекции и практические занятия по программе сдаваемой дисциплины, а также установочные лекции по предметам следующего семестра.
В межсессионный период студенту предлагается повторить пройденный материал по прочитанным установочным лекциям и самостоятельно ознакомиться с указанной литературой.
Программа.
Линейное программирование

  1. Экономико-математические модели. Задачи о рентабельности производства, о смесях, о раскрое материалов, об использовании мощностей. Транспортная задача.
  2. Общая задача линейного программирования (ЗЛП): основные понятия. Различные формы записи ЗЛП. Приведение ЗЛП к каноническому виду.
  3. Выпуклые множества в мерном пространстве. Геометрическая интерпретация ЗЛП. Свойства решений ЗЛП.
  4. Графическое решение ЗЛП: постановка и алгоритм графического метода решения ЗЛП.
  5. Системы линейных уравнений: элементарные преобразования системы, метод Жордана-Гаусса и его алгоритм. Неотрицательное базисное решение.
  6. Симплексный метод решения ЗЛП: геометрическая интерпретация, симплексные таблицы и их заполнение. Теоретическое обоснование симплексного метода: теоремы, лежащие в основе этого метода. Алгоритм симплексного метода.
  7. Теория двойственности. Задача использования сырья. Виды двойственных задач. Правила составления двойственных задач. Теоремы двойственности. Связь между решениями взаимно-двойственных задач.
  8. Транспортная задача. Общая постановка задачи. Закрытая и открытая задачи. Обоснование решения транспортной задачи. Нахождения первоначального опорного плана: метод северо-западного угла, метод минимальной стоимости. Метод потенциалов. Критерий оптимальности решения транспортной задачи. Алгоритм метода потенциалов.

Контрольная работа
Задание 1.  Решить задачу линейного программирования графическим методом:
ƒ= x1 + ax2→max
x1 +2x2 ≤ 10
3x1 + 2x2 ≤ 18
x1 – x2 ≥ – b
cx1 – x2 ≤ 8c + 3
Значения a,b,c выбрать по номеру варианта из таблицы:

N a b c N a b c N a b c N a b c
1 5 7 2 6 -1/4 10 2 11 -5/6 8 1/4 16 -3/4 13/2 ½
2 1 6 3 7 4 12 ½ 12 3 13/2 2 17 3/2 7 2
3 -1 6 1/8 8 5/4 9 1/3 13 1 9 1 18 3 6 1
4 5 9 1 9 -1 6 ½ 14 -1/3 10 2 19 4 8 ¾
5 3/4 7 1 10 5/6 7 1 15 7/4 6 3 20 -1 15/2 1/3

Задание 2.  Составить математическую модель задачи линейного программирования.  Решить графическим способом.
Требуется изготовить изделия вида  А1  не  более n1 штук и вида А2 не более n2 штук из металла не более b кг. На одно изделие вида А1 расходуется а11 кг, вида А2а12 кг. Составить план производства с наибольшей выручкой от продаж, если одно изделие вида А1 реализуется по цене С1 денежных единиц, а одно изделие вида А2 – по цене С2 денежных единиц.


варианта
n1 n2 а11 а12 b С1 С2
1 30 25 3 4 112 15 12
2 25 20 4 3 121 49 28
3 35 25 4 5 160 18 15
4 12 10 8 7 117 20 16
5 14 12 5 4 98 35 20
6 16 14 6 5 116 32 24
7 18 15 5 3 108 24 12
8 22 20 7 6 184 18 12
9 25 22 6 5 175 21 14
10 32 28 5 3 190 24 8
11 30 27 6 4 200 45 27
12 34 30 8 9 317 32 8
13 30 26 4 5 140 36 24
14 27 25 5 6 165 20 15
15 40 36 4 2 176 40 24
16 38 35 5 4 214 35 20
17 29 25 5 3 166 25 15
18 15 12 6 4 114 28 14
19 30 26 5 4 170 33 22
20 26 20 5 3 148 25 10

Задание 3.  Используя метод исключения переменных и геометрические построения, найти решение задачи линейного программирования:
ƒ= ax2 – 3x3 → max
2x1 + bx2 + x3 ≤ 15
2x1 +5x2 – 2x3 ≤ 0
cx1 + 2x2 – x3 = -3
x2 ≥  0, x3 ≥  0
Значения a,b,c выбрать по номеру варианта из таблицы:

N a b c N a b c N a b c N a b c
1 10 2 3 6 -2 2 2 11 -1 5 3 16 -2 5 2
2 -1 1 2 7 2 3 4 12 6 6 4 17 4 4 3
3 3 5 4 8 5 5 3 13 10 1 2 18 12 2 4
4 -3 4 2 9 11 1 4 14 -3 3 3 19 5 3 2
5 12 3 3 10 7 7 2 15 7 3 4 20 -1 3 4

Задание № 4Решить задачу линейного программирования симплекс-методом. Предприятие располагает несколькими группами невзаимозаменяемого оборудования, на котором может быть изготовлено три наименования изделий. Составить план производства изделий, обеспечивающий максимальную прибыль реализуемой продукции. Трудоемкость изделий, фонд полезного времени каждой группы оборудования и прибыль (руб.) от реализации единицы готового изделия каждого вида приведены в следующих таблицах.
Таблица 1                                                   Таблица 2

Изделия оборуд. 1 2 3 Фонд раб.времени Изделия оборуд.  
1
 
2
 
3
Фонд раб. времени
А 2 3 4 780 А 1 4 5 780
Б 1 4 5 850 Б 3 4 2 850
В 3 4 2 790 В 2 3 4 790
Прибыль 8 7 6 Прибыль 8 7 6

 Таблица 3                                                       Таблица 4

Изделия оборуд. 1 2 3 Фонд раб.времени Изделия оборуд.  
1
 
2
 
3
Фонд раб.времени
А 2 3 1 240 А 0 4 6 240
Б 3 1 0 180 Б 2 3 1 180
В 0 4 6 200 В 3 1 0 200
Г 1 0 1 160 Г 1 0 1 160
Прибыль 3 5 4 Прибыль 3 5 4

 
Таблица 5                                                       Таблица 6

Изделия оборуд.  
1
 
 
2
 
3
Фонд раб.времени Изделия оборуд.  
1
 
2
 
3
Фонд раб.времени
А 3 0 4 60 А 6 1 0 60
Б 6 1 0 80 Б 3 0 4 80
В 1 5 1 80 В 1 5 1 80
Г 0 3 4 50 Г 0 3 4 50
Д 2 3 2 56 Д 2 3 2 56
Прибыль 6 5 7 Прибыль 6 5 7

Таблица 7                                                       Таблица 8

Изделия оборуд.  
1
 
 
2
 
3
Фонд раб.времени Изделия оборуд.  
1
 
2
 
3
Фонд раб.времени
А 3 1 0 240 А 0 4 6 240
Б 1 0 1 180 Б 3 1 0 180
В 0 4 6 200 В 1 0 1 200
Г 2 3 1 160 Г 2 3 1 160
Прибыль 6 5 7 Прибыль 3 5 4

 
Таблица 9                                                     Таблица 10

Изделия оборуд.  
1
 
 
2
 
3
Фонд раб.времени Изделия оборуд.  
1
 
2
 
3
Фонд раб.времени
А 1 5 1 60 А 2 3 2 60
Б 3 0 4 80 Б 1 5 1 80
В 6 1 0 80 В 3 0 4 80
Г 2 3 2 50 Г 6 1 0 50
Д 0 3 4 56 Д 0 3 4 56
Прибыль 6 5 7 Прибыль 6 5 7

Таблица 11                                                     Таблица 12  

Изделия оборуд.  
1
 
 
2
 
3
Фонд раб.времени Изделия оборуд.  
1
 
2
 
3
Фонд раб.
времени
А 3 4 2 780 А 2 3 4 780
Б 1 4 5 850 Б 3 4 2 850
В 2 3 4 790 В 1 4 5 790
Прибыль 8 7 6 Прибыль 8 7 6

 
Таблица 13                                                     Таблица 14

Изделия оборуд. 1 2 3 Фонд раб.времени Изделия оборуд. 1 2 3 Фонд раб.времени
А 6 1 0 60 А 2 3 2 60
Б 1 5 1 80 Б 0 3 4 80
В 0 3 4 80 В 6 1 0 80
Г 2 3 2 50 Г 1 5 1 50
Д 3 0 4 56 Д 3 0 4 56
Прибыль 6 5 7 Прибыль 6 5 7

Таблица 15                                                     Таблица 16

Изделия оборуд. 1 2 3 Фонд раб.времени Изделия оборуд. 1 2 3 Фонд раб.времени
А 1 0 1 240 А 2 3 1 240
Б 0 4 6 180 Б 1 0 1 180
В 2 3 1 200 В 0 4 6 200
Г 3 1 0 160 Г 3 1 0 160
Прибыль 3 5 4 Прибыль 3 5 4

Таблица 17                                                     Таблица 18

Изделия оборуд. 1 2 3 Фонд раб.времени Изделия оборуд. 1 2 3 Фонд раб.времени
А 3 1 0 240 А 2 3 1 240
Б 0 4 6 180 Б 0 4 6 180
В 2 3 1 200 В 3 1 0 200
Г 1 0 1 160 Г 1 0 1 160
Прибыль 3 5 4 Прибыль 3 5 4

Таблица 19                                                     Таблица 20

Изделия оборуд. 1 2 3 Фонд раб.времени Изделия оборуд. 1 2 3 Фонд раб.времени
А 3 0 4 60 А 1 5 1 60
Б 6 1 0 80 Б 2 3 2 80
В 1 5 1 80 В 0 3 4 80
Г 0 3 4 50 Г 3 0 4 50
Д 2 3 2 56 Д 6 1 0 56
Прибыль 6 5 7 Прибыль 6 5 7

Задание 5.   К данной задаче линейного программирования составить двойственную задачу. Решить данную задачу графическим методом, а двойственную задачу симплекс- методом. Применяя теорему двойственности получить решение двойственной задачи по известному решению исходной задачи.
Для всех вариантов x1≥ 0, x2≥0.
 

1.      
x1 +6x2≤ 12,
5x1+8x2 ≤ 40
5,5x1+2x2 ≤ 22
ƒ( x  ) = 7x1 +4x2→max
2.  
-x1+2x2≤ 2
3x1+2x2≤ 6
ƒ( x  ) = x1 +4x2→max
 3. 
          x1-2x2 ≤ 2
-2x1+x2≤ 2
x1+ x2 ≤ 3
ƒ( x  ) = x1 +2x2→max
4.  
3x1 +5x2≤11,
4x1+x2 ≤ 8
ƒ( x  ) = x1 +4x2→max
 5.    
3x1 +2x2≤5,
x2 ≤ 2
ƒ( x  ) = x1 +x2→max
6.       
3x1 +2x2≤8,
x1+4 x2 ≤ 10
ƒ( x  ) = 3x1 +4x2→max
7.     
5x1 – 2x2≤3,
x1+ x2 ≤ 1
ƒ( x  ) = x1 -2x2→max
8.       x1+2x2 ≤ 10
-4x1+3x2≤ 12
3x1– 4x2 ≤ 12
ƒ( x  ) = x1 +x2→max
9.
2x1 +20x2≤ 20,
4x1+8x2 ≤ 16,
12x1+3x2 ≤ 24,
ƒ( x  ) = x1 +3x2→max
10.   
2x1 +5x2≤ 20,
6x1+7x2 ≤ 42,
10x1+3x2 ≤ 30,
ƒ( x  ) = 4x1 +4x2→max
11.   
x1 -2x2≤ 2,
-2x1+x2 ≤ 2
x1+x2 ≤ 3
ƒ( x  ) = x1 +2x2→max
12.     
2x1 +5x2≤ 20,
6x1+5x2 ≤ 30
x1-2x2 ≤ 3
ƒ( x  ) = 4x1 +2x2→max
13.
x1 +4x2≤ 12,
x1+2x2 ≤ 10,
2x1+x2 ≤ 12,
ƒ( x  ) =3x1 +8x2→max
14.
8x1 +2x2≤ 89,
x1≤ 22,
5x2 ≤ 90,
ƒ( x  ) = 4x1 +3x2→max
15.
3x1 -2x2≤ 3,
-5x1– 4x2 ≤ -10,
2x1+ x2 ≤ 5,
ƒ( x  ) = 3x1 – x2→max
16.
x1 +4x2≤ 12,
2x1+3x2 ≤ 12,
x1 ≤ 4,
ƒ( x  ) = 4x1+12x2→max
17.
2x1 +18x2≤ 18,
3x1+7x2 ≤21,
4x1+5x2 ≤ 20,
ƒ( x  ) =2x1 +4x2→max
18.
x1 +3x2≤ 15,
x1+x2 ≤ 6,
2x1+x2 ≤ 10,
ƒ( x  ) =x1 +4x2→max
19.
2x1 +2x2≤ 12,
3,5x1+2x2 ≤ 14,
11x1+3x2 ≤ 33,
ƒ( x  ) =6x1 +2x2→max
20.
2x1 +7x2≤ 14,
3x1+5x2 ≤ 15,
10x1+6x2 ≤ 30,
ƒ( x  ) =3x1 +2x2→max
 

Задание6.  Транспортная задача:
а) Составить математическую модель транспортной задачи;
б) Решить транспортную задачу методом наименьшей стоимости.
№1                                                  №2                                                  №3

аi   вj 75 65 75
50 2 3 8
30 4 1 7
80 3 5 3
20 4 2 8

 

аi   вj 50 70 80
100 5 6 2
100 7 4 7
100 5 9 10
аi   вj 27 91 39
60 4 8 2
60 1 8 5
60 7 7 6

№4                                                 №5                                                 №6   

   аi  вj 70 82 36 24
28 7 6 5 4
46 10 7 4 6
62 2 7 8 9
76 4 7 6 5
  аi  вj 28 63 15 48
80 4 3 1 2
70 5 0 4 9
35 7 2 3 2
  аi  вj 70 30 100 40
90 2 3 4 3
60 2 1 2 4
50 5 3 1 2
60 3 4 5 2

№7                                                 №8                                                  №9

  аi  вj 45 15 20 20
25 9 5 3 10
55 6 3 8 2
20 3 8 4 8
40 5 4 2 1
аi  вj 50 30 80
90 5 2 4
50 7 2 3
60 1 8 8
20 2 3 3
аi  вj 50 70 75
40 4 2 3
80 5 10 8
90 5 8 8

№10                                             №11                                                 №12

аi   вj 45 15 22 20
25 9 5 8 4
55 6 6 3 9
22 3 4 2 1
аi  вj 15 40 25 20 30
30 7 3 6 4 1
60 2 5 3 9 8
10 8 1 7 3 4
20 2 2 8 5 11
аi   вj 120 80 70
100 4 8 4
100 5 9 5
100 9 6 7

№13                                             №14                                                №15

аiвj 40 35 30 45 15
46 4 3 2 7 11
34 1 1 6 4 2
40 3 5 9 4 1
15 1 6 8 10 3
аi    вj 70 30 100 40
90 2 3 4 3
50 5 3 1 3
60 2 1 2 4
60 3 4 5 2
аi  вj 200 400 200 100
150 7 4 3 1
100 2 9 4 2
300 2 2 9 3
250 8 3 1 5

№16                                             №17                                                 №18  

аi   вj 150 150 82
100 5 6 8
100 2 7 9
200 10 6 5
аi вj 30 90 80 20 30
120 2 8 4 6 3
30 3 2 5 2 6
40 6 5 8 7 4
60 3 4 4 2 1
аi   вj 86 23 112
50 5 6 7
50 1 7 8
100 10 2 10

 
№19                                                        №20                                           

аi   вj 250 130 180
200 5 6 2
200 1 3 7
200 6 5 5
аi   вj 150 170 190
100 5 7 6
200 2 4 10
300 5 7 8

Есть готовые варианты.
При оплате в комментариях обязательно укажите номер варианта.